Evaluates erfi(z), the imaginary error function.
ERFI(z)
z |
- |
A scalar or series, the integration limit. |
A scalar or series, the value of erfi(z) = -i erf
erfi(1)
returns 1.650426 the value of:
-i * erf(i)
erfi(1 + i)
returns 0.190453 + 1.316151i.
erfi(-2..0.01..2);
xlabel("x");ylabel("erfi(x)");label("Imaginary Error Function");
returns 401 samples of erfi(x).
W1: -2..0.01..2
W2: erfi(W1)
W3: -i * erf(i * w1)
W2 contains the imaginary error function and W3 computes the same function using
The Imaginary Error Function, erfi(z), is defined as:
The input z may be complex.
ERFI is computed from the FADDEEVA function based on an algorithm developed by Steven G. Johnson. The Faddeeva function is defined as: