DADiSP Worksheet Functions > Function Categories > Fourier Transforms and Signal Processing > CCEPS

 

CCEPS

Purpose:

Calculates the complex cepstrum.

Syntax:

CCEPS(series, n)

(c, d) = CCEPS(series)

series

-

An input series or array.

n

-

Optional. An integer, the number of samples to use. If n > length(series), the series is zero padded. Defaults to length(series).

Returns:

A real series or array.

 

(c, d) = CCEPS(s) returns the cepstrum in c and the lag used to unwrap the phase in d.

Example:

W1: gtri(100, 1, 1/100)^3

W2: W1+delay(W1, 60)/2

W3: cceps(W2)

W4: cceps(W2, 512)

 

image\ccepspic.gif

 

W2 adds a synthesized echo at 60 seconds to the data of W1.

 

W3 displays a small peak at t == 60 indicating the presence of the echo. W4 performs the same calculation with the data padded to 512 samples.

Example:

W1: {1, -4.0996, 8.4057, -10.1765, 7.7801, -3.5142, 0.7939}

W2: cceps(W1, 1024)

 

returns the example listed in [2].

Remarks:

The complex cepstrum of a series is essentially ifft(log(fft(s))). However, the complex log calculation requires the evaluation of the continuous phase component. CCEPS unwraps the phase using Shafer's Algorithm. A line is subtracted from the unwrapped phase to remove the integer lag component.

 

(c, d) = cceps(s)

 

returns both the cepstrum and the lag used to unwrap the phase such that:

 

icceps(c, d)

 

ideally returns s if mean(s) > 0.

 

CCEPS was tested successfully against the output from [2].

References:

[1]  Oppenheim & Shafer

       Discrete-Time Signal Processing 

       Prentice Hall, 1989 

       pp 788-792 

 

[2]  IEEE Press

       Programs for Digital Signal Processing 

       IEEE Press, 1979 

       Section 7 

See Also:

ICCEPS

RCEPS